Deglaciation and Holocene climate change in the western Peruvian Andes
نویسندگان
چکیده
Pollen, charcoal, magnetic susceptibility, and bulk density data provide the first paleoecological record spanning the last 33,000 years from the western cordillera of the Peruvian Andes. Sparse super-puna vegetation existed before 30,000 cal yr B.P. around Lake Compuerta (3950 m elevation), prior to a sedimentary hiatus that lasted until c. 16,200 cal yr B.P. When sedimentation resumed, a glacial foreland or super-puna flora is represented in which Polylepis was a significant element. Glacial outwash, marked by high sedimentary magnetic susceptibility, increased from c.16,200 cal yr B.P. and reached a peak at c. 13,200 cal yr B.P. Between c. 12,500 cal yr B.P. and 10,000 cal yr B.P., magnetic susceptibility was reduced. Vegetation shifts suggest a cool dry time, consistent with regional descriptions of the Younger Dryas event. Deglaciation resumes by 10,000 cal yr B.P. and the last ice is lost from the catchment at ∼7500 cal yr B.P. During the early Holocene warm and dry period between 10,000 and 5500 cal yr B.P., Alnus expanded in downslope forests. Alnus declined in abundance at 5500 cal yr B.P. when wetter and cooler conditions returned and human activity intensified. Maize (Zea mays) pollen first occurred in the core at ∼2600 cal yr B.P., indicating a minimum age for local agriculture. An increase in Alnus pollen abundance at ∼1000 cal yr B.P. could be due to human activity or perhaps due to a regional climate change associated with cultural turnover elsewhere in the Andes at this time. © 2006 University of Washington. All rights reserved.
منابع مشابه
Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru
Sediment records from proglacial lakes between 9 and 10 S in the western Cordillera of the Peruvian Andes document the waxing and waning of alpine glaciers since the end of the Lateglacial stage. These records from the southern tropical Andes provide supporting evidence that the early Holocene (between 12 and 8 ka) was relatively warm and dry, and the middle Holocene (between 8 and 4 ka) was ma...
متن کاملThe deglaciation and neoglaciation of Upernavik Isstrøm, Greenland
a r t i c l e i n f o We constrain the history of the Greenland Ice Sheet margin during the Holocene at Upernavik Isstrøm, a major ice stream in northwestern Greenland. Radiocarbon-dated sediment sequences from proglacial-threshold lakes adjacent to the present ice margin constrain deglaciation of the sites to older than 9.6 ± 0.1 ka. This age of deglaciation is confirmed with 10 Be ages of 9.9...
متن کاملA 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru
The manifestation of major climatic events such as the timing of deglaciation and whether, or not, the Younger Dryas affected Andean systems has garnered considerable recent attention. Even the Holocene is rapidly emerging as a time of considerable interest in Neotropical palaeoclimatology and palaeoecology. The Holocene of the Neotropics is now revealed as a time of some temperature change wit...
متن کاملA multi-institutional and interdisciplinary approach to the assessment of vulnerability and adaptation to climate change in the Peruvian Central Andes: problems and prospects
A local integrated assessment of the vulnerability and adaptation to climate change in the Mantaro River Basin, located in Peruvian Central Andes, was developed between years 2003 to 2005. In this paper we present some lessons learned during the development of this study, emphasizing the multi-institutional and interdisciplinary efforts, briefly showing the methodological aspects, and pointing ...
متن کاملHigh-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes
Stable oxygen isotope (d18O) measurements of two speleothems, collected from Huagapo Cave in the central Peruvian Andes and with overlapping age from 1.1 to 1.4 ka, characterize tropical South American climate variability over the last 7150 years. In the study region, precipitation d18O (dOp) is inversely correlated to rainfall amount upstream in the Amazon Basin and the intensity of convection...
متن کامل